The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning
نویسنده
چکیده
These questions contrast the roles of information and complexity in learning. While the two roles share some ground, they are conceptually and technically different. In the common language of learning, the information question is that of generalization and the complexity question is that of scaling. The work of Vapnik and Chervonenkis (1971) provides the key tools for dealing with the information issue. In this review, we develop the main ideas of this framework and discuss how complexity fits in. function?
منابع مشابه
Sign rank versus Vapnik-Chervonenkis dimension
This work studies the maximum possible sign rank of sign (N ×N)-matrices with a given Vapnik-Chervonenkis dimension d. For d = 1, this maximum is three. For d = 2, this maximum is Θ̃(N). For d > 2, similar but slightly less accurate statements hold. The lower bounds improve on previous ones by Ben-David et al., and the upper bounds are novel. The lower bounds are obtained by probabilistic constr...
متن کاملError Bounds for Real Function Classes Based on Discretized Vapnik-Chervonenkis Dimensions
The Vapnik-Chervonenkis (VC) dimension plays an important role in statistical learning theory. In this paper, we propose the discretized VC dimension obtained by discretizing the range of a real function class. Then, we point out that Sauer’s Lemma is valid for the discretized VC dimension. We group the real function classes having the infinite VC dimension into four categories by using the dis...
متن کامل2 Notes on Classes with Vapnik-Chervonenkis Dimension 1
The Vapnik-Chervonenkis dimension is a combinatorial parameter that reflects the ”complexity” of a set of sets (a.k.a. concept classes). It has been introduced by Vapnik and Chervonenkis in their seminal paper [1] and has since found many applications, most notably in machine learning theory and in computational geometry. Arguably the most influential consequence of the VC analysis is the funda...
متن کاملOn the VC-dimension and Boolean functions with long runs
The Vapnik-Chervonenkis (VC) dimension and the Sauer-Shelah lemma have found applications in numerous areas including set theory, combinatorial geometry, graph theory and statistical learning theory. Estimation of the complexity of discrete structures associated with the search space of algorithms often amounts to estimating the cardinality of a simpler class which is effectively induced by som...
متن کاملBoolean Functions: Cryptography and Applications
Abstract. The Vapnik-Chervonenkis (VC) dimension and the Sauer-Shelah lemma have found applications in numerous areas including set theory, combinatorial geometry, graph theory and statistical learning theory. Estimation of the complexity of discrete structures associated with the search space of algorithms often amounts to estimating the cardinality of a simpler class which is effectively indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural Computation
دوره 1 شماره
صفحات -
تاریخ انتشار 1989